) Adam Figer

https://github.com/AdamFiser
https://github.com/AdamFiser

Obsah

1. Obsah 13. Regex prakticky

2. Co jsou to regulami vyrazy? 14. Postup pfi tvorbe regularniho vyrazu
3. Poutiti reguldrnich vyraza 15. Vizualizace reguldrnich vyraza

4. Piklady pouzitf 16. Casté chyby pfi tvorbé regexd

5. Pomocnici 17. Regex v Pythonu

6. Zakladni syntaxe 18. Regulamni vyrazy v Pythonu

7. Kvantifikatory 19. Priklady pouZiti v Pythonu

8. Zastupne znaky 20. Priklad re.sub()

9. _S_g!(__/_(_e_r__c__e__g_r_\g_lgl_cj_ 21. »re.fullmatch()A
10. Skupiny znakd 22. »re.search()A

23. Word Boundaries

[N
|
Z
D

Q
Q
0
D

[N
N
—
(@)

Q
(@]
~

<<
O
X
>
=+
Q)
=
o]
Q
o,
<

L

N Not terrible 62
‘ \ Not ternblefi

“ a little scary

——

[a-
NN atesht

= Autor: Mirza Sisic 3/27

Co jsou to regularni vyrazy?

» Regularni vyrazy jsou zpUsob, jak popsat vzory v textu

» Konstrukce vychazi z teorie formalnich jazykd a prekladacd.

® Jsou to retézce, které popisuji, jaky text hledame

» Pouzivaji se v riznych programovacich jazycich a nastrojich

» Napriklad v JavaScriptu, Pythonu, PHP, nebo v textovych editorech

m Zakladni syntax stejna ve vétsine jazycich, ale mohou se lisit v detailu
= Jsou velmi mocnym nastrojem pro praci s textem

= Jsou také velmi tézké na pochopeni a psani

m Vétdina programatord je neumi spravné pouzivat

4127

Pouziti regularnich vyrazu

= Vyhledavani textu
= Nahrazovani textu
= Validace vstupt
= Napriklad validace emailu, hesla, telefonniho cisla, atd.
= Extrahovani dat

m Filtraci dat

5/27

Priklady pouziti

= Vyhledani véech emaild v textu

» Vyhledani vsech URL v textu

» Vyhledani vsech telefonnich cisel v textu
= Kontrola, zda je heslo dostatecné silné

» Kontrola, zda je email validni

= Kontrola, zda je telefonni Cislo validni

6/27

Pomocnici

= Regex101

7127

https://regex101.com/
https://regexr.com/

Zakladni syntaxe

V syntaxi regularnich vyrazd ma kazdy znak svij specialni vyznam.
= Zakladni znaky se hledaji presné tak, jak jsou napsany.

m Kvantifikatory: * + 2 {n} {n,} {n,m}

= Skupiny: () []

» Rozsahy: a-z A-Z 0-9

» Specidlniznaky: . * $§ x + 2 \ |

8127

Kvantifikatory

Znak kvantifikatoru urcuje, kolikrat se ma znak pred
nim opakovat.

Kvantifikatory se vzdy vztahuji k jednomu znaku
nebo skupiné znakad.

* - nula nebo vice opakovani
+ - jedno nebo vice opakovani
? - nula nebo jedno opakovani
{n} - presné n opakovani
{n,} -nnebo vice opakovani
{n,m} - od n do m opakovani

*? - hleda co nejmensi mozné opakovani

Priklady

a*x - a, aa, aaa, aaaa,

a+ - aa, aaa, aaaa,

a? - a, aa

a{3} - aaa

a{3,} - aaa, aaaa, aaaaa,
a{3,5} - aaa, aaaa, aaaaa
ax? - a, aa, aaa, aaaa,

9/27

Zastupné znaky Priklady

a.c - abc, acc, alc, atc,

m Zastupné znaky se pouzivaji pro hledani libovolného [a-z] - libovolny znak z a-z

znaku nebo skupiny znaka®l. [*a-z] - libovolny znak, ktery neni z a-z
“a - za€ina na a
a$ - konéi na a
“a.xb$ - radek zac¢ind na a a kon¢i na b
[a-z0-9] - libovolny znak z a-z nebo 0-9
[]1 - libovolny znak z dané mnoziny [a-z]{3} - tFi znaky z a-z
[a-z]{3,5} - tri az pét znakl z a-z
alb - bud znak a nebo znak b

= . - libovolny znak

[*] - libovolny znak, ktery neni v dané mnoziné

() - skupina znaku

= | -logicky OR, pravy alt + w

\ - escape znak
m " - zacatek radku, pravy alt + 3

m $ - konecradku, pravy alt + i

10/ 27

Sekvence znaku

m Sekvence znakl se pouzivaji pro hledani konkrétniho fetézce znakd.

m Sekvence znakU se hledaji presné tak, jak jsou napsany.
abc - abc

abc{3} - abccc
abc{3,5} - abccc, abcccc, abccccc

11/27

Mnoziny znakd

[abc]
[a-Z]
[A-Z]
[0-9]

\d -
\D -
\w -
\W -
\s -
\S -

- a nebo

b nebo c

- libovolny znak z a-z

- libovolny znak z A-Z

- libovolny znak z 0-9

[a-zA-Z] - libovolny znak z a-z nebo A-Z
[a-zA-Z0-9] - libovolny znak z a-z, A-Z nebo 0-9

libovolné
libovolny
libovolné
libovolny
libovolny
libovolny

¢islo (0-9) [0-9]

znak, ktery neni ¢islo (0-9) ["0-9]

pismeno nebo ¢islo (a-z, A-Z, 0-9)

znak, ktery neni pismeno nebo ¢islo (“a-z, A-Z, 0-9)
bily znak (mezera, tabulator, novy radek)

znak, ktery neni bily znak

12 /27

Skupiny znaku

m Skupiny znakU se pouzivaji pro hledani vice znakd najednou.
m Skupiny se vzdy uzaviraji do zavorek () .

m Skupiny mohou obsahovat libovolné znaky nebo zastupné znaky.

(alb) - a nebo b

(alblc) - a nebo b nebo ¢

(a|b|c){3} - t¥i znaky a, b nebo c

(a|lb|c){3,5} - tFi az pét znakd a, b nebo c

([A-E]|[0-51){1} - bud znak z A-E nebo z 0-5

([a-z1|["0-9]){3} - t¥i znaky z a-z nebo znaky, které nejsou z 0-9

13/27

Negace

= Negace se pouziva pro hledani znaku, které nejsou v dané mnoziné.

= Negace se zapisuje pomoci * na za¢atku mnoziny znakad.

[*a-z] - libovolny znak, ktery neni z a-z
["0-9] - libovolny znak, ktery neni z 0-9

’ A
|

Pozor! Negace se pouziva pouze uvnitf mnoziny znakG [1 . Neplést s zacinanim radku

14127

Logicky OR (Alternativa)

= Alternativa se pouziva pro hledani vice moznosti najednou.
» Zapisujeme pomoci svislitka | mezi moznostmi.

alb - bud znak a nebo znak b

a|A - bud znak a nebo znak A

abc|def - bud abc nebo def

[a-z]|["0-9] - bud znak z a-z nebo znak, ktery neni z 0-9

15/27

Regex prakticky

Postup pfi tvorbé reguldrniho vyrazu

1. Definujte, co hledate.

= Napr. "Hledam vSechna slova, ktera zacinajina a akoncina z ."

2. Rozdélte problém na ¢asti.

» Hledani slova: [a-zA-Z]+

N

= Zacinana a: "a
m Kond¢ina z: z$
3. Postupné testujte jednotlivé casti.

® Zacnéte s jednoduchym vyrazem a postupné pridavejte dalsi pravidla.

4. PouZijte nastroje pro testovani.

= Doporucené nastroje: Regex101 nebo RegExr.

17127

https://regex101.com/
https://regexr.com/

Vizualizace regularnich vyrazu

Napr. pro regularni vyraz “a.*z$:

1. ” :Zacatek radku.

2. a :Prvni znak musi byt a .

3. .* :Jakékoliv znaky (nula nebo vice opakovani).
4

z$: Posledni znak musi byt z .

zright:

Priklad

"a.*xz$

Text Vysledek

abc X

18 /27

Casté chyby pfi tvorbé regexd

1. Zapomenuty escape znak:

= Napr. hledate tecku (.), ale bez escapovani se jednd o zastupny znak.

= Redeni: Pouzijte \. .
2. Prilis obecny vyraz:

= Napf. .* muze zachytit vice, nez potrebujete.

= Redenf: ZUzit pomoci kvantifikatord, napt. .{1,5} .

3. Nepouzité kotvy (*, $):

= Pokud nehledate od zadatku nebo do konce fadku, mize dojit k nechténym vysledkdam.

= Regenfi: Pouzit kotvy tam, kde jsou nutné.

19/27

Regex v Pythonu

Regularni vyrazy v Pythonu
= Python ma zabudovanou knihovnu re pro praci s regularnimi vyrazy.

= Knihovna obsahuje nekolik zakladnich funkci pro praci s regularnimi vyrazy.

» Regularni vyrazy se vzdy zapisuji jako raw stringy (oznacené predponou r).

" re. _metoda_(_pattern_, _zpracovavany text_)
= Nejcastéji pouzivané metody:

m re.search()
= re.sub()
= re.match()

m re.findall()

21/27

Priklady pouziti v Pythonu

import re

Hledani textu
re.search(r'abc', 'abcde') # <re.Match object; span=(0, 3), match="abc'>

Nahrazeni textu
re.sub(r'abc', 'def', 'abcde') # 'defde'

Validace vstupu
re.match(r'[a-z]+', 'abc') # <re.Match object; span=(0, 3), match="abc'>

Extrahovani dat
re.findall(r'[a-z]+', 'abc def ghi') # ['abc', 'def', 'ghi']

Filtraci dat
re.findall(r'[a-z]{3}', 'abc def ghi') # ['abc', 'def', 'ghi']

22127

Priklad re.sub()

import re

Pro pattern vzdy pouzivejte raw stringy (oznacené predponou r),
abyste se vyhnuli escapovani zpétnym lomitkem.

text = "Python je skvély jazyk. Python je velmi popularni.”
pattern = r'Python’

replacement = "PHP"

new_text = re.sub(pattern, replacement, text)
print(new_text) # "PHP je skvély jazyk. PHP je velmi popularni."

23127

re.fullmatch()

import re

regularni vyraz
regex = r"[a-zA-Z]{2,10}"

text = "Jmeno"
if(re.fullmatch(regex, text)):
print("Spliuje")

else:
print("Nespliuje")

24127

re.search()

import re
texty = [Ilpsll'"pes"’llpsell’llpoell’Ilprasell’“poklicell]
vyrazy = [r"p[ars]e", r"p[ars]*e", r"p["ars]e"]

for text in texty:
for vyraz in vyrazy:
if re.search(vyraz, text):

vysledek = "ano"
else:
vysledek = "ne"
print(text + " splfiuje " + vyraz + ": "+vysledek)

25/27

Word Boundaries

= Word boundaries se pouzivaji pro hledani slov.
® zapisuji se pomoci \b na zacatku nebo na konci slova.
» Kdyz je umisténo mezi dvéma znaky, kontroluje, zda se nachazi na hranici slova (tj. mezi slovem a ne-

slovem).

\babc\b - abc
\babc\b - abc, abcde, abcdef,

Najde slovo “python” pouze jako samostatné slovo,
nikoli jako soucast jiného slova (naptr. “pythonic”).
r"\bpython\b"

Najde trimistna c¢isla jako samostatna slova (napr. “123", ale ne “1234").
Oba zapisy jsou ekvivalentni

r"\b\d{3}\b"

r"\b[0-91{3}\b"

26 /27

Dekuji za pozornost
Otazky?

Repository / Prezentace

https://github.com/OA-PVA2-Syllabus/pva2_prednasky
https://oa-pva2-syllabus.github.io/pva2_prednasky/

