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Co jsou to regularni vyrazy?

»  Regularni vyrazy jsou zpUsob, jak popsat vzory v textu

»  Konstrukce vychazi z teorie formalnich jazykd a prekladacd.

®  Jsou to retézce, které popisuji, jaky text hledame

»  Pouzivaji se v riznych programovacich jazycich a nastrojich

»  Napriklad v JavaScriptu, Pythonu, PHP, nebo v textovych editorech

m  Zakladni syntax stejna ve vétsine jazycich, ale mohou se lisit v detailu
= Jsou velmi mocnym nastrojem pro praci s textem

= Jsou také velmi tézké na pochopeni a psani

m  Vétdina programatord je neumi spravné pouzivat
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Pouziti regularnich vyrazu

= Vyhledavani textu
= Nahrazovani textu
= Validace vstupt
= Napriklad validace emailu, hesla, telefonniho cisla, atd.
= Extrahovani dat

m  Filtraci dat

5/27



Priklady pouziti

= Vyhledani véech emaild v textu

»  Vyhledani vsech URL v textu

»  Vyhledani vsech telefonnich cisel v textu
= Kontrola, zda je heslo dostatecné silné

»  Kontrola, zda je email validni

= Kontrola, zda je telefonni Cislo validni
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Pomocnici

= Regex101

7127


https://regex101.com/
https://regexr.com/

Zakladni syntaxe

V syntaxi regularnich vyrazd ma kazdy znak svij specialni vyznam.
= Zakladni znaky se hledaji presné tak, jak jsou napsany.

m  Kvantifikatory: * + 2 {n} {n,} {n,m}

= Skupiny: () []

» Rozsahy: a-z A-Z 0-9

» Specidlniznaky: . * $§ x + 2 \ |
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Kvantifikatory

Znak kvantifikatoru urcuje, kolikrat se ma znak pred
nim opakovat.

Kvantifikatory se vzdy vztahuji k jednomu znaku
nebo skupiné znakad.

* - nula nebo vice opakovani
+ - jedno nebo vice opakovani
? - nula nebo jedno opakovani
{n} - presné n opakovani
{n,} -nnebo vice opakovani
{n,m} - od n do m opakovani

*? - hleda co nejmensi mozné opakovani

Priklady

a*x - a, aa, aaa, aaaa,

a+ - aa, aaa, aaaa,

a? - a, aa

a{3} - aaa

a{3,} - aaa, aaaa, aaaaa,
a{3,5} - aaa, aaaa, aaaaa
ax? - a, aa, aaa, aaaa,
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Zastupné znaky Priklady

a.c - abc, acc, alc, atc,

m  Zastupné znaky se pouzivaji pro hledani libovolného [a-z] - libovolny znak z a-z

znaku nebo skupiny znaka®l. [*a-z] - libovolny znak, ktery neni z a-z
“a - za€ina na a
a$ - konéi na a
“a.xb$ - radek zac¢ind na a a kon¢i na b
[a-z0-9] - libovolny znak z a-z nebo 0-9
[]1 - libovolny znak z dané mnoziny [a-z]{3} - tFi znaky z a-z
[a-z]{3,5} - tri az pét znakl z a-z
alb - bud znak a nebo znak b

= . - libovolny znak

[*] - libovolny znak, ktery neni v dané mnoziné

() - skupina znaku

= | -logicky OR, pravy alt + w

\ - escape znak
m " - zacatek radku, pravy alt + 3

m  $ - konecradku, pravy alt + i
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Sekvence znaku

m  Sekvence znakl se pouzivaji pro hledani konkrétniho fetézce znakd.

m  Sekvence znakU se hledaji presné tak, jak jsou napsany.
abc - abc

abc{3} - abccc
abc{3,5} - abccc, abcccc, abccccc
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Mnoziny znakd

[abc]
[a-Z]
[A-Z]
[0-9]

\d -
\D -
\w -
\W -
\s -
\S -

- a nebo

b nebo c

- libovolny znak z a-z

- libovolny znak z A-Z

- libovolny znak z 0-9

[a-zA-Z] - libovolny znak z a-z nebo A-Z
[a-zA-Z0-9] - libovolny znak z a-z, A-Z nebo 0-9

libovolné
libovolny
libovolné
libovolny
libovolny
libovolny

¢islo (0-9) [0-9]

znak, ktery neni ¢islo (0-9) ["0-9]

pismeno nebo ¢islo (a-z, A-Z, 0-9)

znak, ktery neni pismeno nebo ¢islo (“a-z, A-Z, 0-9)
bily znak (mezera, tabulator, novy radek)

znak, ktery neni bily znak
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Skupiny znaku

m  Skupiny znakU se pouzivaji pro hledani vice znakd najednou.
m  Skupiny se vzdy uzaviraji do zavorek () .

m  Skupiny mohou obsahovat libovolné znaky nebo zastupné znaky.

(alb) - a nebo b

(alblc) - a nebo b nebo ¢

(a|b|c){3} - t¥i znaky a, b nebo c

(a|lb|c){3,5} - tFi az pét znakd a, b nebo c

([A-E]|[0-51){1} - bud znak z A-E nebo z 0-5

([a-z1|["0-9]){3} - t¥i znaky z a-z nebo znaky, které nejsou z 0-9
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Negace

= Negace se pouziva pro hledani znaku, které nejsou v dané mnoziné.

= Negace se zapisuje pomoci * na za¢atku mnoziny znakad.

[*a-z] - libovolny znak, ktery neni z a-z
["0-9] - libovolny znak, ktery neni z 0-9

’ A
|

Pozor! Negace se pouziva pouze uvnitf mnoziny znakG [ 1 . Neplést s zacinanim radku
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Logicky OR (Alternativa)

= Alternativa se pouziva pro hledani vice moznosti najednou.
» Zapisujeme pomoci svislitka | mezi moznostmi.

alb - bud znak a nebo znak b

a|A - bud znak a nebo znak A

abc|def - bud abc nebo def

[a-z]|["0-9] - bud znak z a-z nebo znak, ktery neni z 0-9
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Regex prakticky




Postup pfi tvorbé reguldrniho vyrazu

1. Definujte, co hledate.

=  Napr. "Hledam vSechna slova, ktera zacinajina a akoncina z ."

2. Rozdélte problém na ¢asti.

» Hledani slova: [a-zA-Z]+

N

= Zacinana a: "a
m Kond¢ina z: z$
3. Postupné testujte jednotlivé casti.

®  Zacnéte s jednoduchym vyrazem a postupné pridavejte dalsi pravidla.

4. PouZijte nastroje pro testovani.

=  Doporucené nastroje: Regex101 nebo RegExr.
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https://regex101.com/
https://regexr.com/

Vizualizace regularnich vyrazu

Napr. pro regularni vyraz “a.*z$ :

1. ” :Zacatek radku.

2. a :Prvni znak musi byt a .

3. .* :Jakékoliv znaky (nula nebo vice opakovani).
4

z$ : Posledni znak musi byt z .

zright:

Priklad

"a.*xz$

Text Vysledek

abc X
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Casté chyby pfi tvorbé regexd

1. Zapomenuty escape znak:

=  Napr. hledate tecku ( . ), ale bez escapovani se jednd o zastupny znak.

= Redeni: Pouzijte \. .
2. Prilis obecny vyraz:

= Napf. .* muze zachytit vice, nez potrebujete.

= Redenf: ZUzit pomoci kvantifikatord, napt. .{1,5} .

3. Nepouzité kotvy ( *, $):

= Pokud nehledate od zadatku nebo do konce fadku, mize dojit k nechténym vysledkdam.

= Regenfi: Pouzit kotvy tam, kde jsou nutné.
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Regex v Pythonu




Regularni vyrazy v Pythonu
= Python ma zabudovanou knihovnu re pro praci s regularnimi vyrazy.

= Knihovna obsahuje nekolik zakladnich funkci pro praci s regularnimi vyrazy.

»  Regularni vyrazy se vzdy zapisuji jako raw stringy (oznacené predponou r ).

" re. _metoda_(_pattern_, _zpracovavany text_)
= Nejcastéji pouzivané metody:

m re.search()
= re.sub()
= re.match()

m re.findall()
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Priklady pouziti v Pythonu

import re

# Hledani textu
re.search(r'abc', 'abcde') # <re.Match object; span=(0, 3), match="abc'>

# Nahrazeni textu
re.sub(r'abc', 'def', 'abcde') # 'defde'

# Validace vstupu
re.match(r'[a-z]+', 'abc') # <re.Match object; span=(0, 3), match="abc'>

# Extrahovani dat
re.findall(r'[a-z]+', 'abc def ghi') # ['abc', 'def', 'ghi']

# Filtraci dat
re.findall(r'[a-z]{3}', 'abc def ghi') # ['abc', 'def', 'ghi']
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Priklad re.sub()

import re

# Pro pattern vzdy pouzivejte raw stringy (oznacené predponou r),
# abyste se vyhnuli escapovani zpétnym lomitkem.

text = "Python je skvély jazyk. Python je velmi popularni.”
pattern = r'Python’

replacement = "PHP"

new_text = re.sub(pattern, replacement, text)
print(new_text) # "PHP je skvély jazyk. PHP je velmi popularni."
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re.fullmatch()

import re

# regularni vyraz
regex = r"[a-zA-Z]{2,10}"

text = "Jmeno"
if(re.fullmatch(regex, text)):
print("Spliuje")

else:
print("Nespliuje")
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re.search()

import re
texty = [Ilpsll'"pes"’llpsell’llpoell’Ilprasell’“poklicell]
vyrazy = [ r"p[ars]e", r"p[ars]*e", r"p["ars]e" ]

for text in texty:
for vyraz in vyrazy:
if re.search(vyraz, text):

vysledek = "ano"
else:
vysledek = "ne"
print(text + " splfiuje " + vyraz + ": "+vysledek)

25/27



Word Boundaries

=  Word boundaries se pouzivaji pro hledani slov.
®  zapisuji se pomoci \b na zacatku nebo na konci slova.
»  Kdyz je umisténo mezi dvéma znaky, kontroluje, zda se nachazi na hranici slova (tj. mezi slovem a ne-

slovem).

\babc\b - abc
\babc\b - abc, abcde, abcdef,

# Najde slovo “python” pouze jako samostatné slovo,
# nikoli jako soucast jiného slova (naptr. “pythonic”).
r"\bpython\b"

# Najde trimistna c¢isla jako samostatna slova (napr. “123", ale ne “1234").
# Oba zapisy jsou ekvivalentni

r"\b\d{3}\b"

r"\b[0-91{3}\b"
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Dekuji za pozornost
Otazky?

Repository / Prezentace


https://github.com/OA-PVA2-Syllabus/pva2_prednasky
https://oa-pva2-syllabus.github.io/pva2_prednasky/

